What can we learn from brain autopsies in COVID-19? Shibani S. Mukerjia,* and Isaac H. Solomonb

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687409/

 2021 Jan 18; 742: 135528.
Published online 2020 Nov 25. doi: 10.1016/j.neulet.2020.135528
PMCID: PMC7687409
PMID: 33248159

What can we learn from brain autopsies in COVID-19?

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) for which there have been over 50 million confirmed cases and 1.2 million deaths globally. While many SARS-CoV-2 infected individuals are asymptomatic or experience respiratory symptoms, extrapulmonary manifestations, including neurological symptoms and conditions, are increasingly recognized. There remains no clear understanding of the mechanisms that underlie neurological symptoms in COVID-19 and whether SARS-CoV-2 has the potential for neuroinvasion in humans. In this minireview, we discuss what is known from human autopsies in fatal COVID-19, including highlighting studies that investigate for the presence of SARS-CoV-2 in brain and olfactory tissue, and summarize the neuropathological consequences of infection. Incorporating microscopic and molecular findings from brain tissue into what we know about clinical disease will inform best practice management guidance and direct research priorities as it relates to neurological morbidity from COVID-19.

Keywords: COVID-19, SARS-CoV-2, Brain autopsies, Neuropathology, Neuropathogenesis, Immunohistochemistry, Reverse transcriptase polymerase chain reaction

1. Manuscript

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped, single-stranded positive-sense RNA betacoronavirus, is the causative agent of coronavirus disease 2019 (COVID-19), for which there have been over 50 million confirmed cases and 1.2 millions deaths worldwide as of November 8, 2020 [,]. Morbidity and mortality are more common in older individuals and those with comorbidities, including cardiovascular disease, hypertension, obesity, and diabetes, although young people with no comorbidities are also at risk for critical illness [, , ]. While many SARS-CoV-2 infected individuals are asymptomatic or experience predominantly respiratory symptoms, extrapulmonary manifestations, including neurological symptoms and conditions, are increasingly recognized [, , ]. The majority of current studies on neurological manifestations are case reports or retrospective series focused on hospitalized patients through the extraction of medical record data, which have described disorders of consciousness, delirium, and neuromuscular and cerebrovascular complications [, , , ]. Smell and taste disturbances in the absence of nasal obstruction are particularly characteristic of COVID-19, leading to speculation regarding the olfactory nerve as a possible route of central nervous system entry [,]. Other neurological findings include headache, myalgia, rhabdomyolysis, Guillain-Barre syndrome, encephalopathy, and myelopathy with rare cases of encephalitis based on imaging or cerebrospinal fluid [,, , , , , ]. SARS-CoV-2 has not been detected in cerebrospinal fluid in the majority of patients tested [,], highlighting the need for studies of autopsy brain tissue to understand COVID-19 neuropathogenesis and develop neurocognitive preserving treatment strategies.

Autopsies provide a wealth of information about the decedents, regardless of whether a likely cause of death was identified pre-mortem [,]. Due to initial uncertainties regarding the infectious properties of SARS-CoV-2 and limitations in personnel and personal protective equipment availability, autopsies for COVID-19 patients have been limited, although an increasing number of studies are now being published (reviewed in [, , ]). Reports of detailed neuropathological examinations have lagged behind general autopsy series, in part due to the initial focus on lung pathology combined with the longer (2–3 weeks) formalin fixation time preferred by most neuropathologists before cutting brains. Additional factors include the reluctance of some institutions to perform brain removal in COVID-19 cases due to concerns over electric bone saw generated aerosols, which can be effectively contained through the use of vacuum filters or hand saws [,]. Included in this review are peer-reviewed studies of autopsy findings published in English between January 1, 2020, and November 5, 2020. Two different databases (PubMed, Google Scholar) were searched for key terms, including COVID-19, nCoV-2019, and SARS-CoV-2, crossed with autopsy, histology, histopathology, neuropathology, and post-mortem. This search was complemented with three review articles [, , ], text word searching and examining references in identified articles. A total of 24 studies were identified that included 149 individuals (range 1–43 subjects per series). Reported gross and microscopic findings and results of SARS-CoV-2 targeted studies are summarized in Table 1 . Representative gross, microscopic, and ultrastructural findings are illustrated in Fig. 1 .

Table 1

Summary of Published COVID-19 Reports with Autopsy Brain Findings.

Reference No. Cases Included; autopsy type Macroscopic Evaluation Microscopic Evaluation SARS-CoV-2 Protein SARS-CoV-2 RNA
Puelles et al. 2020 []
Wichmann et al. 2020 []
Matschke et al. 2020 []
43; subset full autopsy with brain findings Edema (n = 23), fresh territorial infarct (n = 6) Fresh ischemic infarct (n = 6), astrocytosis, microgliosis, perivascular, parenchymal, and leptomeningeal T cells (n = 43) Viral spike or nucleocapsid IHC positive in 16/40 cases (rare cells in medulla; 2 cases with vagus or glossopharyngeal nerves) qRT-PCR positive (13/27; median 4700 viral E gene copies/cell; range <1000 to 162,000) in frontal lobe and/or medulla
Solomon et al. 2020 [] 18; brain-only findings No specific findings Mild to moderate acute hypoxic injury (n = 18); rare foci of perivascular and leptomeningeal inflammation (n = 3) Viral nucleocapsid IHC negative in all cases qRT-PCR positive (n = 5; 5.0–59.4 N1/N2 copies/μL)
Remmelink et al. 2020 [] 11; full autopsy with brain findings Recently drained subdural hematoma (n = 1); cerebral hemorrhage (n = 1) Cerebral hemorrhage or hemorrhagic suffusion (n = 8), focal ischemic necrosis (n = 3), edema and/or vascular congestions (n = 5), diffuse or focal spongiosis (n = 10) N.A. qRT-PCR positive (n = 9; viral E gene; Ct: 28.67–35.11)
Schurink et al. 2020 [] 11; full autopsy with brain findings No specific findings Hypoxic changes, activation/clusting of microglia, astrogliosis, perivascular cuffing of T cells most prominent in olfactory bulbs and medulla (n = 11); neutrophilic plugs (n = 3) Viral nucleocapsid IHC negative in 11 cases N.A.
Fabbri et al. 2020 [] 10; full autopsy with brain findings Edema and meningeal congestion (n = 10), cerebral infarction (n = 3), uncal herniation (n = 2), purulent leptomeninges (n = 1), subarachnoid hemorrhage (n = 1) Global hypoxic-ischemic injury (n = 10), acute hypoxic injury (all), intravascular microthrombi (n = 10), macro and/or microinfarcts (n = 10); perivascular microhemorrhage (n = 10), microglial activation (n = 5), perivascular/leptomeningeal lymphocytic inflammation (n = 1) N.A. qRT-PCR positive in olfactory nerve and brain tissue in (n = 1; RdRp, E, and N genes)
Schaller et al. 2020 [] 10; full autopsy with brain findings No specific findings No specific findings N.A. N.A.
Hanley et al. 2020 [] 9; full autopsy with brain findings Hemorrhagic conversion of middle cerebral artery stroke (n = 1) Moderate to intense microglial activation; mild T- cell infiltrate around blood vessels and capillaries, and ischemic changes of variable extent in the neurons of the cortex and the white matter (n = 5) N.A. qRT-PCR positive (n = 4; 101 to 104 viral E gene copies per μg total RNA);
Subgenomic viral RNA positive (n = 1; Ct ∼32)
Deigendesch et al. 2020 []
Menter et al. 2020 [] *
7; full autopsy with brain findings Moderate global brain edema without cerebral mass displacement (n = 1) Microglial activation in pons, medulla, and olfactory bulb; sparse perivascular and leptomeningeal infiltrates of lymphocytes; mild acute hypoxic-ischemic encephalopathy (n = 3) N.A. qRT-PCR positive in olfactory bulb (n = 4), optic nerve (n = 2); not detected in brainstem or cerebellum (ORFab1, S, and N genes)
von Weyham et al. 2020 [] 6; full autopsy with brain findings Massive hemorrhage and herniation (n = 2); petechial bleedings (n = 4) Hypoxic alterations (n = 6); lymphocytic meningitis and encephalitis (n = 6); brainstem neuronal cell loss in (n = 4), axon degeneration (n = 3) N.A. N.A.
Bradley et al. 2020 [] 5; full autopsy with brain findings Scattered punctate subarachnoid hemorrhages (n = 1) Rare microhemorrhages in the brainstem (n = 1) N.A. N.A.
Kantonen et al. 2020 [] 4; full autopsy with brain findings Mild brain swelling, discoloration of watershed areas, lacunar infarcts, and microhemorrhages in cerebral and cerebellar white matter, deep gray matter, and brain stem (n = 1) High density acute microhemorrhages, severe hypoxic-ischemic injury, scattered T lymphocytes, and axonal spheroids (n = 1); mild to moderate hypoxic-ischemic injury (n = 3) Viral spike IHC negative in brain, olfactory mucosa, and carotid body qRT-PCR negative in brain and olfactory mucosa (RdRp, N. and E genes)
Bussani et al. 2020 [] 3; fill autopsy with brain findings N.A. Gliosis, neuronal loss, vascular rarefaction N.A. N.A.
Barton et al. 2020 [] 2; full autopsy with brain findings No gross abnormalities N.A. N.A. N.A.
Jaunmuktane et al. 2020 [] 2; brain-only findings Large acute and subacute infarcts (n = 1); white matter microhemorrhages and microinfarcts (n = 1) Hemorrhages and infarcts (n = 2); mild leptomeningeal inflammation (n = 1) N.A. N.A.
Kirschenbaum et al. 2020 [] 2; brain-only findings N.A. Perivascular leukocytic infiltrates in basal ganglia and intravascular microthrombi (n = 2); prominent leukocytic infiltrates in olfactory epithelium (n = 2) N.A. N.A.
Al-Dalahmah et al. 2020 [] 1; full autopsy with brain findings Cerebellar hemorrhage, acute infarcts in the dorsal pons and medulla, tonsillar herniation Global hypoxia; numerous microglial nodules and neuronophagia in the inferior olives and cerebellar dentate nuclei; mild perivascular and sparse parenchymal and leptomeningeal lymphocytes; perivascular hemorrhages; chronic active inflammation in olfactory epithelium; red neurons in olfactory bulb and normal tract Viral nucleocapsid IHC negative qRT-PCR positive in nasal epithelium (Mean Ct 31.75, 278 copies/μL RNA), olfactory bulb (Ct 36.70, 11 copies/μL);
Cerebellar clot (Ct 33.0, 559 copies/μL), and cerebellum (Ct 37.17, 8 copies/μL);
Viral ISH negative
Craver et al. 2020 [] 1; full autopsy with brain findings No CNS lesions identified No CNS lesions identified N.A. N.A.
Dolhnikoff et al. 2020 [] 1; full autopsy with brain findings N.A. Microglial reactivity N.A. N.A.
Lax et al. 2020 [] 1: full autopsy with brain findings No acute alterations No acute alterations N.A. N.A.
Paniz-Mondolfi et al 2020 [] 1; brain-only findings N.A. N.A. TEM showed viral like particles in frontal lobe sections qRT-PCR positive (four different assays targeting ORF1/a and E-gene, N1, N2, N3, N2 and E-gene, and ORF1ab and S genes)
Reichard et al 2020 [] 1; brain-only findings Mild brain swelling and hemorrhagic white matter lesions Focal hemorrhage, ADEM-like lesions, microinfarcts, damaged axons, hypoxic-ischemic injury N.A. N.A.

Abbreviations: ADEM, acute disseminated encephalomyelitis; Ct, cycle threshold; qRT-PCR, quantitative reverse transcriptase polymerase chain reaction; E gene, SARS-CoV-2 envelope gene; ORF1ab, open reading frame 1ab; IHC, immunohistochemistry; ISH, in-situ hybridization; RdRp, RNA-dependent RNA polymerase gene; N.A., not available or evaluated; TEM, transmission electron microscopy.

*Provided data on angiotensin converting enzyme – 2 (ACE2) IHC in brain tissue and olfactory bulb.

Fig. 1

Neuropathological findings of COVID-19. (A) Coronal brain slice from a 55 year old man who died from COVID-19 contains a calcified nodule (arrow) in the right globus pallidus, but is otherwise unremarkable. (B) Hematoxylin and eosin stained section of hippocampus shows scattered hypereosinophilic neurons indicative of acute hypoxic injury. (C) Hematoxylin and eosin stained section shows extravasated red blood cells suggestive of microhemorrhage (deep pink). (D) CD45 immunostaining (brown) highlights a small collection of perivascular immune cells. (E) CD45 immunostaining (brown) also highlights numerous resident immune cells of the brain parenchyma (microglia). (F) In comparison to panel E, a patient without COVID-19 shows minimal CD45 immunostaining (brown). (G) SARS-CoV-2 nucleocapsid immunohistochemistry (brown) shows a cytoplasmic staining pattern in respiratory epithelial cells of the trachea. (H) Transmission electron micrograph of SARS-CoV-2 from cultured cells shows spherical extracellular viral particles (arrows). Images B-F taken at 200x magnification, G at 400x magnification, and are each from a different patient. Image H is from the Centers for Disease Control and Prevents Public Health Image Library, courtesy of Courtesy Cynthia S. Goldsmith and A. Tamin.

Gross brain autopsy findings were reported individually or in aggregate for 142 subjects. In keeping with the high prevalence of comorbidities in this patient population, evidence of prior brain disease was frequently identified, including neurodegeneration, prior strokes, tumor resection, demyelinating disease, and atherosclerosis. Acute gross abnormalities were much more limited, and a direct causal relationship with SARS-CoV-2 infection was not always straightforward to identify. A total of 92 (65 %) of the gross brain examinations reported either no significant findings or no acute abnormalities. Of the remaining 50 cases, multiple findings were often described in individual brains. Hemorrhage was the most common abnormality reported, ranging from petechial bleedings and punctate subarachnoid hemorrhages (n = 9) [,, , , , ], to large cerebral/cerebellar hemorrhages (n = 4) [,,], hemorrhagic conversion of middle cerebral artery stroke (n = 1) [], and a recently drained subdural hematoma (n = 1) []. Large acute and/or subacute infarcts (n = 11) [,,,] as well as lacunar infarcts/microinfarcts and watershed infarcts (n = 2) [,] were identified in several cases. Severe edema resulting in herniation (n = 5) [,,] as well as mild to moderate edema without herniation (n = 34) [,,,,] were also present.

Microscopic findings were reported for 146 of the cases in these studies. Similar to the gross examinations, histopathology identified correlates of pre-existing disease, including neurodegeneration, chronic/subacute strokes, hepatic encephalopathy, and arteriolosclerosis. No specific findings were reported for 25 (17 %) of the cases. Mild to moderate acute hypoxic injury was the most common abnormality (n = 58) [,,,,,,, , ], while severe hypoxic-ischemic injury (n = 1) [] and infarcts/focal ischemic necrosis (n = 22) [,,,,] were identified in several cases. Focal microhemorrhage or hemorrhagic suffusion was also frequently reported (n = 23) [,, , , , , ], although intravascular microthrombi (n = 12) [,] or neutrophilic plugs (n = 3) [] were less common. Mild focal perivascular, parenchymal, and leptomeningeal T-cell predominant lymphocytic infiltrates were identified in a large number of cases without clear evidence of vasculitis or meningoencephalitis (n = 81) [,, , ,, , , , , , ]. Moderate to intense microglial activation was noted, particularly in the brainstem (n = 73), although similar results were also reported in COVID-19-negative individuals with systemic inflammatory/septic clinical courses [,, , , ,]. Axonal damage was identified in a few cases (n = 5) [,,]. Acute disseminated encephalomyelitis (ADEM)-like lesions were reported in a single case []. The olfactory system was examined to varying degrees, identifying prominent acute and chronic inflammation in the olfactory epithelium (n = 14) [,,], microglial activation (n = 18) [] and red neurons (n = 1) [] in the olfactory bulb, and only unremarkable age-related corpora amylacea in olfactory tracts.

Researchers across the globe have employed multiple strategies to directly assess for the presence of SARS-CoV-2 in brain tissue, including immunohistochemistry, in situ hybridization (ISH), targeted quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and transmission electron microscopy. At this time, immunohistochemistry, using antibodies that recognize the viral nucleocapsid (N) or spike (S) proteins, have been negative in most attempted human cases (n = 58) [,,,,], with the exception of a recent case series that reported positive staining in vagus and glossopharyngeal nerves and scattered cells in the medulla in a total of 16 cases []; in situ hybridization for viral RNA has been negative (n = 1) []. Viral spike protein has been reported to be present in the olfactory epithelium in 5/6 patients; however, brain findings from these cases were not discussed []. A number of qRT-PCR assays have been employed targeting the N, S, envelope (E), open reading frame (ORF) 1/a, ORF1ab, or RNA-dependent reverse transcriptase (RdRp) genes, identifying low levels of virus in frozen or formalin-fixed paraffin-embedded brain tissue (34/84; 41 %) [,, , , , , , , ,] and olfactory bulb/tract (n = 9/36; 25 %) [,,,]. Viral subgenomic RNA, a marker of actively replicating virus, was positive in a single case (n = 1/5; 20 %) []. Transmission electron microscopy (TEM) without immunolabeling reported virus-like particles in the frontal lobe (n = 1) [].

While additional COVID-19 autopsy series continue to be published, the overall picture of acute hypoxic-injury, hemorrhage, and mild to moderate non-specific inflammation is unlikely to change significantly. Evidence of direct viral involvement in the brain or olfactory nerve is limited to the detection of low levels of viral RNA and rare viral antigen in cranial nerves and scattered brainstem cells. Diagnosis of coronavirus particles by electron microscopy is challenging due to similar appearing normal cellular structures, which has created significant controversy in the literature [,]. Due to the inherent bias of autopsy studies for severe, fatal disease, and additional institutional restrictions for which cases include brain evaluation, the frequency and extent of neuropathological findings are likely to be overestimated relative to the average COVID-19 patient. At the time of this review, pediatric autopsies, including individuals with multisystem inflammatory syndrome in children (MIS-C), remain extremely limited. While the number of pediatric COVID-19 cases accounts for <2 % of all cases [], data obtained from brain tissue in this age-group can help address the unique pathophysiology of SARS-CoV-2 infection, including age-dependent immune-responses, hypercoagulability, and degree of hypoxic-ischemic injury.

Additional remaining areas of interest include characterizing the effects of remdesivir and other potential antiviral therapeutics, immunomodulatory medications including dexamethasone, anti-IL-6 or other monoclonal antibodies, and anticoagulants on brain tissue. Given that the therapeutic response to COVID-19 vastly differs between institutions, it remains a challenge to understand how therapeutic choices during acute hospitalization are responsible for the variability in observed neurological manifestations and neuropathological findings. Also, while not surprisingly this early in the pandemic, long-term neuropathological sequelae in COVID-19 survivors remain unstudied. There is evidence that neurological symptoms, including fatigue and headaches, linger for weeks to months in a subset of affected patients [,] and studies determining mechanisms for persistent neurological symptoms are needed.

There have been several efforts for sharing COVID-19 brain tissue, including the International Society of Neuropathology (ISN) Collaborative Efforts [] and the COVID-19 Virtual Biobank at the University of Nebraska Medical Center []. To address many of the remaining unanswered questions regarding the neuropathological effects of COVID-19, large scale integrated studies from multiple institutions with relevant clinical metadata will be crucial. The ongoing collection of neurological tissue will be critical to inform best practice management guidance and to direct research priorities as it relates to neurological morbidity from COVID-19.

Funding sources

S.S.M. was supported by the National Institute of Mental Health at the National Institutes of Health [grant number K23MH115812], James S. McDonnell Foundation and the Harvard University Eleanor and Miles Shore Fellowship Program. I.H.S. was supported by the National Institute of Neurological Disorders and Stroke at the National Institutes of Health [grant number R21NS119660].

Acknowledgements

We would like to acknowledge all front-line healthcare workers taking care of patients during the COVID-19 pandemic, and patients and their families who contribute research to help understand neurological disease.

References

1. University J.H. 2020. COVID-19 Map-Johns Hopkins Coronavirus Resource Center.https://coronavirus.jhu.edu/map.html []
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. [PMC free article] [PubMed] []
3. Bhimraj A., Morgan R.L., Shumaker A.H., Lavergne V., Baden L., Cheng V.C.-C., Edwards K.M., Gandhi R., Muller W.J., O’Horo J.C., Shoham S., Murad M.H., Mustafa R.A., Sultan S., Falck-Ytter Y. Infectious diseases society of america guidelines on the treatment and management of patients with COVID-19. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa478. [PMC free article] [PubMed] [CrossRef] []
4. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. [PMC free article] [PubMed] []
5. Docherty A.B., Harrison E.M., Green C.A., Hardwick H.E., Pius R., Norman L., Holden K.A., Read J.M., Dondelinger F., Carson G., Merson L., Lee J., Plotkin D., Sigfrid L., Halpin S., Jackson C., Gamble C., Horby P.W., Nguyen-Van-Tam J.S., Ho A., Russell C.D., Dunning J., Openshaw P.J., Baillie J.K., Semple M.G. ISARIC4C investigators, Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. [PMC free article] [PubMed] []
6. Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan S., Sehrawat T.S., Bikdeli B., Ahluwalia N., Ausiello J.C., Wan E.Y., Freedberg D.E., Kirtane A.J., Parikh S.A., Maurer M.S., Nordvig A.S., Accili D., Bathon J.M., Mohan S., Bauer K.A., Leon M.B., Krumholz H.M., Uriel N., Mehra M.R., Elkind M.S.V., Stone G.W., Schwartz A., Ho D.D., Bilezikian J.P., Landry D.W. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020;26:1017–1032. [PubMed] []
7. Zubair A.S., McAlpine L.S., Gardin T., Farhadian S., Kuruvilla D.E., Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. 2020 https://jamanetwork.com/journals/jamaneurology/article-abstract/2766766 [PMC free article] [PubMed] []
8. Ellul M.A., Benjamin L., Singh B., Lant S., Michael B.D., Easton A., Kneen R., Defres S., Sejvar J., Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020 doi: 10.1016/S1474-4422(20)30221-0. [PMC free article] [PubMed] [CrossRef] []
9. Merkler A.E., Parikh N.S., Mir S., Gupta A., Kamel H., Lin E., Lantos J., Schenck E.J., Goyal P., Bruce S.S., Kahan J., Lansdale K.N., LeMoss N.M., Murthy S.B., Stieg P.E., Fink M.E., Iadecola C., Segal A.Z., Cusick M., Campion T.R., Jr., Diaz I., Zhang C., Navi B.B. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020 doi: 10.1001/jamaneurol.2020.2730. [PMC free article] [PubMed] [CrossRef] []
10. Mao L., Wang M., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., Miao X., Hu Y., Li Y., Jin H., Hu B. 2020. Neurological Manifestations of Hospitalized Patients With COVID-19 in Wuhan, China: a Retrospective Case Series Study.https://papers.ssrn.com/abstract=3544840 []
11. Cooper K.W., Brann D.H., Farruggia M.C., Bhutani S., Pellegrino R., Tsukahara T., Weinreb C., Joseph P.V., Larson E.D., Parma V., Albers M.W., Barlow L.A., Datta S.R., Di Pizio A. COVID-19 and the chemical senses: supporting players take center stage. Neuron. 2020;107:219–233. [PMC free article] [PubMed] []
12. Paniz‐Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., Sordillo E.M., Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) J. Med. Virol. 2020;92:699–702. [PMC free article] [PubMed] []
13. Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology. 2020;296:E119–E120. [PMC free article] [PubMed] []
14. Reichard R.R., Kashani K.B., Boire N.A., Constantopoulos E., Guo Y., Lucchinetti C.F. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020;140:1–6. [PMC free article] [PubMed] []
15. Romero-Sánchez C.M., Díaz-Maroto I., Fernández-Díaz E., Sánchez-Larsen Á., Layos-Romero A., García-García J., González E., Redondo-Peñas I., Perona-Moratalla A.B., Del Valle-Pérez J.A., Gracia-Gil J., Rojas-Bartolomé L., Feria-Vilar I., Monteagudo M., Palao M., Palazón-García E., Alcahut-Rodríguez C., Sopelana-Garay D., Moreno Y., Ahmad J., Segura T. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020 doi: 10.1212/WNL.0000000000009937. [PMC free article] [PubMed] [CrossRef] []
16. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Ueno M., Sakata H., Kondo K., Myose N., Nakao A., Takeda M., Haro H., Inoue O., Suzuki-Inoue K., Kubokawa K., Ogihara S., Sasaki T., Kinouchi H., Kojin H., Ito M., Onishi H., Shimizu T., Sasaki Y., Enomoto N., Ishihara H., Furuya S., Yamamoto T., Shimada S. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020;94:55–58. [PMC free article] [PubMed] []
17. McAbee G.N., Brosgol Y., Pavlakis S., Agha R., Gaffoor M. Encephalitis associated with COVID-19 infection in an 11-year-old child. Pediatr. Neurol. 2020;109:94. [PMC free article] [PubMed] []
18. Pilotto A., Odolini S., Stefano Masciocchi S., Comelli A., Volonghi I., Gazzina S., Nocivelli S., Pezzini A., Focà E., Caruso A., Others Steroid-responsive encephalitis in Covid-19 disease. Ann. Neurol. 2020 doi: 10.1002/ana.25783. [PMC free article] [PubMed] [CrossRef] []
19. Abu-Rumeileh S., Abdelhak A., Foschi M., Tumani H., Otto M. Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J. Neurol. 2020 doi: 10.1007/s00415-020-10124-x. [PMC free article] [PubMed] [CrossRef] []
20. Roulson J., Benbow E.W., Hasleton P.S. Discrepancies between clinical and autopsy diagnosis and the value of post mortem histology; a meta-analysis and review. Histopathology. 2005;47:551–559. [PubMed] []
21. Shojania K.G., Burton E.C., McDonald K.M., Goldman L. Changes in rates of autopsy-detected diagnostic errors over time: a systematic review. JAMA. 2003;289:2849–2856. [PubMed] []
22. Sessa F., Bertozzi G., Cipolloni L., Baldari B., Cantatore S., D’Errico S., Di Mizio G., Asmundo A., Castorina S., Salerno M., Pomara C. Clinical-forensic autopsy findings to defeat COVID-19 disease: a literature review. J. Clin. Med. Res. 2020;9 doi: 10.3390/jcm9072026. [PMC free article] [PubMed] [CrossRef] []
23. Polak S.B., Van Gool I.C., Cohen D., von der Thüsen J.H., van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod. Pathol. 2020 doi: 10.1038/s41379-020-0603-3. [PMC free article] [PubMed] [CrossRef] []
24. Deshmukh V., Motwani R., Kumar A., Kumari C., Raza K. Histopathological observations in COVID-19: a systematic review. J. Clin. Pathol. 2020 doi: 10.1136/jclinpath-2020-206995. [PubMed] [CrossRef] []
25. Hanley B., Lucas S.B., Youd E., Swift B., Osborn M. Autopsy in suspected COVID-19 cases. J. Clin. Pathol. 2020;73:239–242. [PubMed] []
26. Menter T., Haslbauer J.D., Nienhold R., Savic S., Hopfer H., Deigendesch N., Frank S., Turek D., Willi N., Pargger H., Bassetti S., Leuppi J.D., Cathomas G., Tolnay M., Mertz K.D., Tzankov A. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020 doi: 10.1111/his.14134. [PMC free article] [PubMed] [CrossRef] []
27. von Weyhern C.H., Kaufmann I., Neff F., Kremer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. 2020;395:e109. [PMC free article] [PubMed] []
28. Bradley B.T., Maioli H., Johnston R., Chaudhry I., Fink S.L., Xu H., Najafian B., Deutsch G., Lacy J.M., Williams T., Yarid N., Marshall D.A. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396:320–332. [PMC free article] [PubMed] []
29. Jaunmuktane Z., Mahadeva U., Green A., Sekhawat V., Barrett N.A., Childs L., Shankar-Hari M., Thom M., Jäger H.R., Brandner S. Microvascular injury and hypoxic damage: emerging neuropathological signatures in COVID-19. Acta Neuropathol. 2020;140:397–400. [PMC free article] [PubMed] []
30. Kantonen J., Mahzabin S., Mäyränpää M.I., Tynninen O., Paetau A., Andersson N., Sajantila A., Vapalahti O., Carpén O., Kekäläinen E., Kantele A., Myllykangas L. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathol. 2020 doi: 10.1111/bpa.12889. [PMC free article] [PubMed] [CrossRef] []
31. Fabbri V.P., Foschini M.P., Lazzarotto T., Gabrielli L., Cenacchi G., Gallo C., Aspide R., Frascaroli G., Cortelli P., Riefolo M., Giannini C., D’Errico A. Brain ischemic injury in COVID-19-infected patients: a series of 10 post-mortem cases. Brain Pathol. 2020 [PMC free article] [PubMed] []
32. Remmelink M., De Mendonça R., D’Haene N., De Clercq S., Verocq C., Lebrun L., Lavis P., Racu M.-L., Trépant A.-L., Maris C., Rorive S., Goffard J.-C., De Witte O., Peluso L., Vincent J.-L., Decaestecker C., Taccone F.S., Salmon I. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit. Care. 2020;24:495. [PMC free article] [PubMed] []
33. Al-Dalahmah O., Thakur K.T., Nordvig A.S., Prust M.L., Roth W., Lignelli A., Uhlemann A.-C., Miller E.H., Kunnath-Velayudhan S., Del Portillo A., Liu Y., Hargus G., Teich A.F., Hickman R.A., Tanji K., Goldman J.E., Faust P.L., Canoll P. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol. Commun. 2020;8:147. [PMC free article] [PubMed] []
34. Hanley B., Naresh K.N., Roufosse C., Nicholson A.G., Weir J., Cooke G.S., Thursz M., Manousou P., Corbett R., Goldin R., Al-Sarraj S., Abdolrasouli A., Swann O.C., Baillon L., Penn R., Barclay W.S., Viola P., Osborn M. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe. 2020 doi: 10.1016/S2666-5247(20)30115-4. [PMC free article] [PubMed] [CrossRef] []
35. Matschke J., Lütgehetmann M., Hagel C., Sperhake J.P., Schröder A.S., Edler C., Mushumba H., Fitzek A., Allweiss L., Dandri M., Dottermusch M., Heinemann A., Pfefferle S., Schwabenland M., Sumner Magruder D., Bonn S., Prinz M., Gerloff C., Püschel K., Krasemann S., Aepfelbacher M., Glatzel M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19:919–929. [PMC free article] [PubMed] []
36. Deigendesch N., Sironi L., Kutza M., Wischnewski S., Fuchs V., Hench J., Frank A., Nienhold R., Mertz K.D., Cathomas G., Matter M.S., Siegemund M., Tolnay M., Schirmer L., Pröbstel A.-K., Tzankov A., Frank S. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020 doi: 10.1007/s00401-020-02213-y. [PMC free article] [PubMed] [CrossRef] []
37. Solomon I.H., Normandin E., Bhattacharyya S., Mukerji S.S., Keller K., Ali A.S., Adams G., Hornick J.L., Padera R.F., Jr., Sabeti P. Neuropathological features of Covid-19. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2019373. [PMC free article] [PubMed] [CrossRef] []
38. Schurink B., Roos E., Radonic T., Barbe E., Bouman C.S.C., de Boer H.H., de Bree G.J., Bulle E.B., Aronica E.M., Florquin S., Fronczek J., Heunks L.M.A., de Jong M.D., Guo L., du Long R., Lutter R., Molenaar P.C.G., Neefjes-Borst E.A., Niessen H.W.M., van Noesel C.J.M., Roelofs J.J.T.H., Snijder E.J., Soer E.C., Verheij J., Vlaar A.P.J., Vos W., van der Wel N.N., van der Wal A.C., van der Valk P., Bugiani M. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020;1:e290–e299. [PMC free article] [PubMed] []
39. Kirschenbaum D., Imbach L.L., Ulrich S., Rushing E.J., Keller E., Reimann R.R., Frauenknecht K.B.M., Lichtblau M., Witt M., Hummel T., Steiger P., Aguzzi A., Frontzek K. Inflammatory olfactory neuropathy in two patients with COVID-19. Lancet. 2020;396:166. [PMC free article] [PubMed] []
40. Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., van der Meer F., Kallio K., Kaya T., Anastasina M., Smura T., Levanov L., Szirovicza L., Tobi A., Kallio-Kokko H., Österlund P., Joensuu M., Meunier F.A., Butcher S.J., Winkler M.S., Mollenhauer B., Helenius A., Gokce O., Teesalu T., Hepojoki J., Vapalahti O., Stadelmann C., Balistreri G., Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020 doi: 10.1126/science.abd2985. [PMC free article] [PubMed] [CrossRef] []
41. Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., Sperhake J.P., Wong M.N., Allweiss L., Chilla S., Heinemann A., Wanner N., Liu S., Braun F., Lu S., Pfefferle S., Schröder A.S., Edler C., Gross O., Glatzel M., Wichmann D., Wiech T., Kluge S., Pueschel K., Aepfelbacher M., Huber T.B. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 2020;383:590–592. [PMC free article] [PubMed] []
42. Miller S.E., Brealey J.K. Visualization of putative coronavirus in kidney. Kidney Int. 2020;98:231–232. [PMC free article] [PubMed] []
43. Miller S.E., Goldsmith C.S. Caution in identifying coronaviruses by Electron microscopy. J. Am. Soc. Nephrol. 2020;31:2223–2224. [PMC free article] [PubMed] []
44. Parri N., Lenge M., Buonsenso D., Coronavirus Infection in Pediatric Emergency Departments (CONFIDENCE) Research Group Children with Covid-19 in pediatric emergency departments in Italy. N. Engl. J. Med. 2020;383:187–190. [PMC free article] [PubMed] []
45. Carfì A., Bernabei R., Landi F. Gemelli against COVID-19 post-acute care study group, persistent symptoms in patients after acute COVID-19. JAMA. 2020;324:603–605. [PMC free article] [PubMed] []
46. Tenforde M.W., Kim S.S., Lindsell C.J., Billig Rose E., Shapiro N.I., Files D.C., Gibbs K.W., Erickson H.L., Steingrub J.S., Smithline H.A., Gong M.N., Aboodi M.S., Exline M.C., Henning D.J., Wilson J.G., Khan A., Qadir N., Brown S.M., Peltan I.D., Rice T.W., Hager D.N., Ginde A.A., Stubblefield W.B., Patel M.M., Self W.H., Feldstein L.R., IVY Network Investigators, CDC COVID-19 Response Team, IVY Network Investigators Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network – United States, march-june 2020. MMWR Morb. Mortal. Wkly. Rep. 2020;69:993–998. [PMC free article] [PubMed] []
47. COVID-19, (n.d.). https://www.intsocneuropathol.com/2020/04/accessing-covid-19-brain-tissue/ (Accessed September 10, 2020).
48. COVID-19 Biorepository, (n.d.). https://covidbank.unmc.edu/ (Accessed September 10, 2020).
49. Wichmann D., Sperhake J.-P., Lütgehetmann M., Steurer S., Edler C., Heinemann A., Heinrich F., Mushumba H., Kniep I., Schröder A.S., Burdelski C., de Heer G., Nierhaus A., Frings D., Pfefferle S., Becker H., Bredereke-Wiedling H., de Weerth A., Paschen H.-R., Sheikhzadeh-Eggers S., Stang A., Schmiedel S., Bokemeyer C., Addo M.M., Aepfelbacher M., Püschel K., Kluge S. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann. Intern. Med. 2020;173:268–277. [PMC free article] [PubMed] []
50. Schaller T., Hirschbühl K., Burkhardt K., Braun G., Trepel M., Märkl B., Claus R. Postmortem examination of patients with COVID-19. JAMA. 2020 doi: 10.1001/jama.2020.8907. [PMC free article] [PubMed] [CrossRef] []
51. Bussani R., Schneider E., Zentilin L., Collesi C., Ali H., Braga L., Volpe M.C., Colliva A., Zanconati F., Berlot G., Silvestri F., Zacchigna S., Giacca M. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020 [PMC free article] [PubMed] []
52. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020;153:725–733. [PMC free article] [PubMed] []
53. Craver R., Huber S., Sandomirsky M., McKenna D., Schieffelin J., Finger L. Fatal eosinophilic myocarditis in a healthy 17-Year-Old male with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2c) Fetal Pediatr. Pathol. 2020;39:263–268. [PMC free article] [PubMed] []
54. Dolhnikoff M., Ferreira Ferranti J., de Almeida Monteiro R.A., Duarte-Neto A.N., Soares Gomes-Gouvêa M., Viu Degaspare N., Figueiredo Delgado A., Montanari Fiorita C., Nunes Leal G., Rodrigues R.M., Taverna Chaim K., Rebello Pinho J.R., Carneiro-Sampaio M., Mauad T., Ferraz da Silva L.F., Brunow de Carvalho W., Saldiva P.H.N., Garcia Caldini E. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4:790–794. [PMC free article] [PubMed] []
55. Lax S.F., Skok K., Zechner P., Kessler H.H., Kaufmann N., Koelblinger C., Vander K., Bargfrieder U., Trauner M. Pulmonary arterial thrombosis in COVID-19 with fatal outcome : results from a prospective, single-center, clinicopathologic case series. Ann. Intern. Med. 2020;173:350–361. [PMC free article] [PubMed] []

2,666 thoughts on “What can we learn from brain autopsies in COVID-19? Shibani S. Mukerjia,* and Isaac H. Solomonb

  1. Unquestionably believe that that you said. Your favourite justification appeared to be at the net the simplest thing to understand of. I say to you, I definitely get irked whilst folks consider concerns that they plainly don’t recognize about. You controlled to hit the nail upon the highest and also outlined out the whole thing with no need side-effects , other people could take a signal. Will probably be again to get more. Thank you

  2. I just wanted to send a brief note to thank you for some of the great ways you are writing here. My time-consuming internet look up has now been recognized with excellent facts and techniques to go over with my family members. I would believe that many of us readers actually are rather lucky to dwell in a remarkable website with very many brilliant professionals with interesting ideas. I feel somewhat lucky to have come across the webpage and look forward to plenty of more exciting moments reading here. Thank you once again for all the details.

  3. [url=https://sildenafilmg.online/#]viagra cost per pill[/url] when will viagra be generic

  4. [url=https://sildenafilmg.online/#]viagra without a doctor prescription[/url] buying viagra online

  5. [url=https://sildenafilmg.online/#]over the counter viagra[/url] best place to buy viagra online

  6. [url=https://prednisoneforsale.store/#]prednisone tablets india[/url] prednisone 40 mg tablet

  7. [url=https://amoxilforsale.best/#]amoxicillin capsules 250mg[/url] buy amoxicillin 500mg usa

  8. штабелер электрический
    [url=https://elektroshtabeler-kupit.ru]http://elektroshtabeler-kupit.ru/[/url]

  9. штабелер самоходный
    [url=https://shtabeler-elektricheskiy-samokhodnyy.ru]http://www.shtabeler-elektricheskiy-samokhodnyy.ru[/url]

  10. подъемник ножничный передвижной
    [url=https://nozhnichnyye-podyemniki-dlya-sklada.ru]https://www.nozhnichnyye-podyemniki-dlya-sklada.ru/[/url]

  11. [url=https://stromectoltrust.com/#]stromectol 3 mg tablets price[/url] stromectol 12 mg tablets

  12. [url=https://pharmacyizi.com/#]pills for erection[/url] mexican pharmacy without prescription

  13. [url=https://pharmacyizi.com/#]legal to buy prescription drugs without prescription[/url] drugs prices

  14. [url=https://onlinepharmacy.men/#]canadian pharmacy coupon code[/url] best online foreign pharmacies

  15. [url=https://allpharm.store/#]online medicine order discount[/url] canadian rx pharmacy online

  16. [url=https://canadiandrugs.best/#]how can i order prescription drugs without a doctor[/url] mexican pharmacy without prescription

  17. рохля электрическая
    [url=https://samokhodnyye-elektricheskiye-telezhki.ru]http://www.samokhodnyye-elektricheskiye-telezhki.ru[/url]

  18. самоходная тележка
    [url=https://samokhodnyye-elektricheskiye-telezhki.ru]https://samokhodnyye-elektricheskiye-telezhki.ru[/url]

  19. [url=https://medrxfast.com/#]best ed pills non prescription[/url] legal to buy prescription drugs without prescription

  20. мачтовый подъемник
    [url=https://podyemniki-machtovyye-teleskopicheskiye.ru]https://podyemniki-machtovyye-teleskopicheskiye.ru[/url]

  21. [url=https://medrxfast.com/#]legal to buy prescription drugs without prescription[/url] carprofen without vet prescription

  22. подъемник мачтовый
    [url=https://podyemniki-machtovyye-teleskopicheskiye.ru]https://podyemniki-machtovyye-teleskopicheskiye.ru[/url]

  23. гидравлический подъемный стол
    [url=https://gidravlicheskiye-podyemnyye-stoly.ru]https://gidravlicheskiye-podyemnyye-stoly.ru[/url]

  24. [url=https://glucophage.top/#]can you buy metformin over the counter[/url] india pharmacy metformin online

  25. I must thank you for the efforts you’ve put in writing this website. I really hope to check out the same high-grade content by you in the future as well. In truth, your creative writing abilities has inspired me to get my own, personal website now 😉

  26. Good post. I learn something totally new and challenging on sites I stumbleupon on a daily basis. It will always be useful to read through content from other authors and practice something from their sites.

  27. Hi, I do think this is an excellent website. I stumbledupon it 😉 I will revisit yet again since I book-marked it. Money and freedom is the greatest way to change, may you be rich and continue to help other people.

  28. I must thank you for the efforts you have put in writing this site. I’m hoping to check out the same high-grade blog posts from you in the future as well. In fact, your creative writing abilities has inspired me to get my own, personal blog now 😉

  29. Greetings, There’s no doubt that your site could possibly be having web browser compatibility issues. Whenever I look at your site in Safari, it looks fine however, if opening in Internet Explorer, it has some overlapping issues. I merely wanted to provide you with a quick heads up! Other than that, great website!

  30. The very next time I read a blog, Hopefully it won’t disappoint me as much as this particular one. After all, I know it was my choice to read, however I actually thought you would probably have something useful to say. All I hear is a bunch of moaning about something that you can fix if you weren’t too busy searching for attention.

  31. Right here is the perfect web site for anyone who would like to find out about this topic. You realize so much its almost hard to argue with you (not that I really will need to…HaHa). You certainly put a new spin on a topic which has been written about for decades. Great stuff, just excellent.

  32. May I just say what a relief to uncover a person that genuinely understands what they are discussing on the web. You actually know how to bring an issue to light and make it important. More and more people need to look at this and understand this side of your story. It’s surprising you aren’t more popular because you most certainly possess the gift.

  33. Hi, I believe your blog might be having web browser compatibility issues. Whenever I look at your web site in Safari, it looks fine however, if opening in IE, it’s got some overlapping issues. I simply wanted to give you a quick heads up! Other than that, great site.

  34. Everything is very open with a really clear clarification of the issues. It was definitely informative. Your website is very helpful. Thanks for sharing.

  35. You’re so interesting! I don’t believe I’ve truly read through a single thing like this before. So great to find another person with a few genuine thoughts on this subject. Really.. thank you for starting this up. This web site is something that’s needed on the web, someone with some originality.

  36. Oh my goodness! Incredible article dude! Many thanks, However I am experiencing problems with your RSS. I don’t understand the reason why I cannot subscribe to it. Is there anyone else having the same RSS issues? Anyone who knows the solution will you kindly respond? Thanks!!

  37. Hi there! This blog post couldnít be written any better! Looking at this post reminds me of my previous roommate! He continually kept preaching about this. I most certainly will forward this article to him. Fairly certain he’s going to have a great read. I appreciate you for sharing!

  38. Aw, this was a really good post. Taking a few minutes and actual effort to create a really good article… but what can I say… I procrastinate a lot and don’t manage to get anything done.

  39. After I originally commented I appear to have clicked the -Notify me when new comments are added- checkbox and now each time a comment is added I recieve four emails with the same comment. There has to be a means you are able to remove me from that service? Appreciate it.

  40. Greetings, I do believe your web site may be having web browser compatibility problems. When I take a look at your blog in Safari, it looks fine however, when opening in IE, it’s got some overlapping issues. I merely wanted to provide you with a quick heads up! Besides that, great website!

  41. That is a really good tip especially to those new to the blogosphere. Short but very accurate info… Thank you for sharing this one. A must read article.

  42. I would like to thank you for the efforts you have put in penning this site. I’m hoping to view the same high-grade content by you later on as well. In fact, your creative writing abilities has inspired me to get my own website now 😉

  43. An impressive share! I have just forwarded this onto a co-worker who had been conducting a little research on this. And he actually bought me breakfast due to the fact that I stumbled upon it for him… lol. So allow me to reword this…. Thanks for the meal!! But yeah, thanx for spending time to talk about this matter here on your site.

  44. Hi there! This blog post could not be written any better! Going through this post reminds me of my previous roommate! He always kept talking about this. I am going to forward this information to him. Pretty sure he will have a very good read. Many thanks for sharing!

  45. Good post. I learn something totally new and challenging on websites I stumbleupon on a daily basis. It will always be useful to read articles from other writers and practice a little something from their websites.